Viossat, P. B. \& Rodier, K. N. (1988). Acta Cryst. C44, 825-828.
Wemple, M. W., Tsai, H.-L. Folting, K., Henderickson, D. N. \& Christou, G. (1993). Inorg. Chem. 32, 2025-2031.

Acta Cryst. (1997). C53, 1396-1400

Silver Acetate-Triphenylphosphine Complexes. Acetatobis(triphenylphosphine)silver(I) and its Sesquihydrate, and Bis[acetato(triphenylphosphine)silver(I)] Hydrate and its Hemihydrate

Seik Weng Ng^{a} and A. Hamid Othman ${ }^{b}$
${ }^{a}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, Universiti Kebangsaan Malaysia, 46300 Bangi. Malaysia. E-mail: hlnswen@csd.um.edu.my

(Received 16 January 1997; accepted 2 May 1997)

Abstract

The Ag atom in both independent molecules of acetatobis(triphenylphosphine) silver(I), $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\right.$ $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}$], is bonded to the triphenylphospine and chelating acetato ligands in a distorted tetrahedral environment. Acetatobis(triphenylphosphine)silver(I) sesquihydrate, $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$. $1.5 \mathrm{H}_{2} \mathrm{O}$, also crystallizes as two independent molecules, the Ag atoms of which adopt a similar geometry. One $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\right.$ $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}$] molecule is linked through a water molecule to another complex molecule, which in turn is linked to the symmetry-related first molecule through the other two water molecules, one of which is disordered, affording a chain structure parallel to the b axis. Bis (μ-acetato)- $O, O^{\prime}: O ; O: O$-bis[(triphenylphosphine)silver(I)] hydrate, $\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right.$].$\mathrm{H}_{2} \mathrm{O}$, comprises two $\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right.$] moieties; the acetato ligand behaves as a bidentate chelating anion in one complex moiety but as a monodentate anion in the other. The two moieties link through the singly bonded ester O atom into a dinuclear entity. Neighboring dinuclear entities are linked by hydrogen bonds involving their doubly-bonded carboxyl ends with the disordered water molecule to form a zigzag chain along the c axis. In bis(μ-acetato- $O: O$) bis[(triphenylphosphine)silver(I)] hemihydrate, $\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$]. $0.5 \mathrm{H}_{2} \mathrm{O}$, the two $\mathrm{Ag}-\mathrm{O}_{\text {carboxyl }}$ distances are long enough for the geome-

try of the Ag atoms to be regarded as being essentially trigonal planar in the two complex units. The dinuclear molecule uses its doubly-bonded O atoms to link with the disordered water molecule to afford a hydrogenbonded tetranuclear entity.

Comment

Acetatobis(triphenylphosphine)silver(I), (I), has been synthesized by reacting silver ketenide with excess triphenylphosphine in refluxing toluene (Femi-Onadeko, 1980), but it can be conveniently prepared by treating silver acetate with two molar equivalents of triphenylphosphine in boiling toluene. This complex is the silver analog of acetatobis(triphenylphosphine)copper(I) (Drew, Othman, Edwards \& Richards, 1975), which exists as a monomeric acetato-chelated tetrahedral compound. Both compound (I) and its sesquihydrate, (II), show similar four-coordinate tetrahedral geometries for their Ag atoms. However, the anhydrous compound (I) is packed ($d=1.392 \mathrm{~g} \mathrm{~cm}^{-3}$) such that there are no solvent-accessible voids in its unit cell, as calculated by PLATON (Spek, 1990). The sesquihydrate, (II), is more loosely packed ($d=1.345 \mathrm{~g} \mathrm{~cm}^{-3}$) and there are four $72 \AA^{3}$ voids in the unit cell.

(I)

(II)

(III)
Acta Cristallographica Section C
ISSN 0108-2701 © 1997

(IV)

The reaction between equimolar quantities of silver acetate and triphenylphosphine in toluene yields more than one product. Tetrameric tetrakis(acetatotri-

Fig. 1. ORTEPII (Johnson, 1976) plot of (a) molecule a and (b) molecule b of acetatobis(triphenylphosphine)silver(1) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Fig. 2. ORTEPII (Johnson, 1976) plot of (a) molecule a and (b) molecule b of acetatobis(triphenylphosphine)silver(I) sesquihydrate at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The disordered water molecule is shown as one molecule.
phenylphosphinesilver) was obtained when the mixture was recrystallized from the same solvent (Blues, Drew \& Femi-Onadeko, 1977). In the present study, bis[acetato(triphenylphosphine)silver(I)] hydrate, (III), and the hemihydrate, (IV), were isolated in separate reactions using the same method and solvent. The structure of (IV) has been reported previously; the water molecule (Ng \& Othman, 1995) has been shown by the new diffraction data to be disordered over the twofold axis.

In mononuclear compound (I), the acetato group chelates to the Ag atom, the chelation being more
isobidentate in one molecule than the other [in molecule $a, \mathrm{Ag}-\mathrm{O}=2.420$ (2) and $2.438(2) \AA$; in molecule $b, \mathrm{Ag}-\mathrm{O}=2.379$ (3) and 2.510 (3) A$]$. The compound also exists as a mononuclear sesquihydrate, (II), the acetato group of which shows a similar bonding feature [in molecule $a, \mathrm{Ag}-\mathrm{O}=2.395$ (3) and 2.492 (4) \AA; in molecule $b, \mathrm{Ag}-\mathrm{O}=2.423$ (4) and 2.425 (5) A]. Complexation of silver(I) acetate with only one molecule of triphenylphosphine affords dinuclear (III), which contains one molecule of water, as well as compound (IV), which contains only half a molecule of water. In (IV), both acetato groups are regarded as being essentially unidentate [$\mathrm{Agla}-\mathrm{Ol} a=2.204$ (3) and $\mathrm{Ag} 1 a \cdots \mathrm{O} 2 a=2.706$ (3) \AA; $\mathrm{Ag} 1 b-\mathrm{O} 1 b=2.197$ (3) and $\mathrm{Ag} 1 b \cdots \mathrm{O} 2 b=2.773$ (4) \AA] as the Ag atoms display trigonal planar geometries (sum of angles $=360^{\circ}$). The doubly-bonded O atoms, which form hydrogen

Fig. 3. ORTEPII (Johnson, 1976) plot of bis[acetato(triphenylphosphine)silver(I)] hydrate at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The disordered water molecule is shown as one molecule.

Fig. 4. ORTEPII (Johnson, 1976) plot of bis[acetato(triphenylphosphine)silver(I)] hemihydrate at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The disordered water molecule is shown as one molecule.
bonds to the water molecule, distort the geometry of the Ag atoms towards square planar. The two acetato(triphenylphosphine)silver(I) halves of (IV) are related by a non-crystallographic center of inversion. On the other hand, in (III), only one Ag atom is chelated by the acetato group $[\mathrm{Agl} b-\mathrm{Ol} b=2.355$ (3) and $\mathrm{Agl} b-$ $\mathrm{O} 2 b=2.481$ (3) A] but its geometry is distorted tetrahedral rather than distorted square planar. The other Ag atom of (III) shows a P-Ag-O angle of $167.40(8)^{\circ}$, the magnitude of which is similar to those in (IV), which argues for trigonal planar coordination for this Ag atom $[\mathrm{Pl} a-\mathrm{Agl} a-\mathrm{Ol} a=167.40(8), \mathrm{Pl} a-\mathrm{Agl} a-\mathrm{Ol} b=$ 115.27 (7) and $\mathrm{Ol} a-\mathrm{AgI} a-\mathrm{Ol} b=77.2(1)^{\circ}$; sum of angles at $\mathrm{Ag}=359.9(3)^{\circ} \mathrm{J}$.

Experimental

Acetatobis(triphenylphosphine)silver(I), (I), was obtained by reacting silver(I) acetate with two molar equivalents of triphenylphosphine in a small volume of toluene. The mixture was briefly heated until the reactants had dissolved; slow cooling of the filtered solution gave colorless crystals of the compound. Another attempt at the synthesis yielded compound (II) and it could not be ascertained if either impurities in the solvent or the slight excess of triphenylphosphine used in the reaction had catalyzed its formation. The hydrate, (III), was obtained when a $1: 1$ silver acetate/triphenylphosphine ratio was used. The hemihydrate, (IV), was adventitiously obtained in a separate synthesis employing this stoichiometry.

Compound (I)

Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=691.45$
Triclinic
$P \overline{1}$
$a=10.078$ (1) \AA 。
$b=13.7748$ (9) \AA
$c=24.167(3) \AA$
$\alpha=92.048(8)^{\circ}$
$\beta=90.67(1)^{\circ}$
$\gamma=100.186(9)^{\circ}$
$V=3299.5(6) \AA^{3}$
$Z=4$
$D_{1}=1.392 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
ω scan
Absorption correction:
ψ, scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.614, T_{\text {max }}=0.651$
12264 measured reflections
11596 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=14.5-15.0^{\circ}$
$\mu=0.740 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Cube
$0.58 \times 0.58 \times 0.58 \mathrm{~mm}$
Colorless
9658 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=24.97^{\circ}$
$h=0 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-28 \rightarrow 28$
3 standard reflections
\quad frequency: 60 min
intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.101$
$S=1.071$
11594 reflections
673 parameters
H atoms: riding model, $U(\mathrm{H})=1.5 U_{\mathrm{cq}}(\mathrm{C})$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0586 P)^{2}\right.$
$+1.2901 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.003$
$\Delta \rho_{\text {max }}=0.443 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.420 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

Agla-Pla	2.4483 (8)	Agl b - Pl b	2.4264 (8)
Agla-P2a	2.4332 (8)	Ag1 b-P2 b	2.4608 (8)
Agla-Ola	2.420 (2)	$\mathrm{Ag} 1 b-\mathrm{O} 1 b$	2.379 (3)
$\mathrm{Ag} 1 a-\mathrm{O} 2 a$	2.438 (2)	$\mathrm{Ag} 1 b-\mathrm{O} 2 b$	2.510 (3)
Pla-Agla-P2a	129.62 (3)	$\mathrm{Pl} b-\mathrm{Agl} b-\mathrm{Ol} b$	125.61 (8)
Pla-Agla-Ola	106.03 (7)	$\mathrm{Pl} b-\mathrm{Aglb}-\mathrm{O} 2 b$	118.59 (9)
Pla-Agla-O2a	114.83 (7)	$\mathrm{P} 2 b-\mathrm{Ag} 1 b-\mathrm{Ol} b$	109.18 (8)
$\mathrm{P} 2 a-\mathrm{Agla}-\mathrm{Ol} a$	114.83 (7)	$\mathrm{P} 2 b-\mathrm{Ag} 1 b-\mathrm{O} 2 b$	102.0 (1)
$\mathrm{P} 2 a \cdot \mathrm{Ag} 1 a-\mathrm{O} 2 a$	112.87 (7)	$\mathrm{O} 1 b-\mathrm{AgIb}-\mathrm{O} 2 b$	52.3 (1)
O1a-Agla-O2a	53.33 (7)	$\mathrm{C} 21 b-\mathrm{Pl} b-\mathrm{Ag} 1 b$	112.19 (8)
Clla-Pla-Agla	112.81 (7)	C31b-P1b-Ag1 b	113.11 (7)
C21a-Pla-Agla	114.10 (8)	$\mathrm{C} 11 b-\mathrm{Pl} b-\mathrm{Ag} 1 b$	117.44 (8)
C31a-P1a-Agla	116.09 (8)	$\mathrm{C} 41 b-\mathrm{P} 2 b-\mathrm{Ag} 1 b$	120.57 (6)
$\mathrm{C} 41 a-\mathrm{P} 2 a-\mathrm{Agla}$	115.72 (7)	$\mathrm{C} 51 b-\mathrm{P} 2 b-\mathrm{Ag} 1 b$	104.76 (8)
C51a-P2a-Agla	118.46 (8)	$\mathrm{C} 61 b-\mathrm{P} 2 b-\mathrm{Ag} 1 b$	115.5 (2)
C61a-P2a-Agla	107.72 (8)	C61-P2b-Ag1 b	115.0)(2)
$\mathrm{P} 1 b-\mathrm{Ag} 1 b-\mathrm{P} 2 b$	124.13 (3)		

Compound (II)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$.-
$1.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=718.48$
Monoclinic
C2/c
$a=44.318$ (6) \AA
$b=13.2622(8) \AA$
$c=25.060$ (3) \AA
$\beta=105.492$ (5) ${ }^{\circ}$
$V=14194(3) \AA^{3}$
$Z=16$
$D_{x}=1.345 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.700, T_{\text {max }}=0.737$
11926 measured reflections
11605 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=14.5-15.0^{\circ}$
$\mu=0.694 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Cube
$0.44 \times 0.44 \times 0.44 \mathrm{~mm}$
Colorless

7914 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=24.99^{\circ}$
$h=-52 \rightarrow 50$
$k=0 \rightarrow 15$
$I=0 \rightarrow 29$
3 standard reflections
\quad frequency: 60 min
intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.135$

$$
S=1.059
$$

11605 reflections
661 parameters
H atoms: riding model,

$$
U(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C}) ;
$$

water H atoms placed at calculated positions with
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.508 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.328 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)
$U=0.1 \AA^{2}$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II)

Agla-Pla	2.434 (1)	Agl b - Pl b	2.404 (1)
Agla-P2a	2.436 (1)	Ag1b-P2 b	2.441 (1)
Agla-Ola	2.395 (3)	$\mathrm{Agl} b-\mathrm{Ol} b$	2.423 (4)
$\mathrm{Agla}-\mathrm{O} 2 a$	2.492 (4)	$\mathrm{Ag} 16-\mathrm{O} 2 b$	2.425 (5)
Pla-Agla-P2a	129.44 (5)	P1 b - $\mathrm{Ag} 16-\mathrm{P} 2 b$	128.53 (5)
Pla-Agla-Ola	114.2 (1)	Pl b-Aglb-Ol b	119.9 (1)
$\mathrm{Pla}-\mathrm{Agla}-\mathrm{O} 2 a$	108.9 (1)	$\mathrm{Pl} b-\mathrm{Ag} 1 b-\mathrm{O} 2 b$	118.9 (1)
$\mathrm{P} 2 a-\mathrm{Agla}-\mathrm{Ol} a$	115.1 (1)	$\mathrm{P} 2 b-\mathrm{Ag} 1 b-\mathrm{Ol} b$	$107.2(1)$
$\mathrm{P} 2 a-\mathrm{Ag} 1 a-\mathrm{O} 2 a$	109.2 (1)	$\mathrm{P} 2 b-\mathrm{AgI} b-\mathrm{O} 2 b$	104.8 (1)
$\mathrm{Ola}-\mathrm{Agla-O2a}$	52.5 (1)	$\mathrm{Ol} b-\mathrm{Ag} 1 b-\mathrm{O} 2 b$	53.7 (1)
Clla-Pla-Agla	119.1 (1)	$\mathrm{Cl} 1 \mathrm{~b}-\mathrm{P} 1 b-\mathrm{Ag} 1 b$	112.6(1)
C21a-P1a-Agla	113.5 (1)	$\mathrm{C} 21 b-\mathrm{Pl} b-\mathrm{Agl}$ b	117.5 (1)
C31a-PIa-Agla	109.5 (1)	$\mathrm{C} 31 b-\mathrm{Pl}$ - -Ag 16	111.6(1)
C41a-P2a-Agla	118.0 (1)	C41b-P2b-Ag1 b	116.2 (1)
C51a-P2a-Agla	115.7 (1)	$\mathrm{C} 51 b-\mathrm{P} 2 b-\mathrm{Ag} 1 b$	114.9 (1)
C61a-P2a-Agla	108.4 (1)	C61b-P2b-Agl b	110.6(1)

Compound (III)

Crystal data
$\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$.-
Mo $K \alpha$ radiation
$\mathrm{H}_{2} \mathrm{O}$
$M_{r}=876.38$
Monoclinic
$P 2_{1} / c$
$a=15.850$ (1) \AA
$b=12.4271(6) \AA$
$c=19.935$ (2) \AA
$\beta=103.960$ (4) ${ }^{\circ}$
$V=3810.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.528 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.415, T_{\text {max }}=0.473$
6895 measured reflections
6681 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.118$
$S=1.138$
6681 reflections
373 parameters
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=14.5-15.0^{\circ}$
$\mu=1.153 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Cube
$0.65 \times 0.65 \times 0.65 \mathrm{~mm}$
Colorless

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0677 P)^{2}\right. \\
&+8.9548 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

H atoms: riding model, $U(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$;
water H -atoms placed at calculated positions with $U=0.1 \AA^{2}$

Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (III)

Agla-Pla	2.350 (1)	Agl b-Pl b	2.3428 (9)
Agla--Ola	2.258 (3)	$\mathrm{AgIb}-\mathrm{Ol} a$	2.451 (3)
Agla-O1b	2.565 (3)	$\mathrm{Agl} b-\mathrm{Ol} b$	2.355 (3)
$\mathrm{Ag} 1 a-\mathrm{O} 2 a$	2.622 (4)	$\mathrm{Agl} b-\mathrm{O} 2 b$	2.481 (3)
Pla-Agla-Ola	167.40 (8)	$\mathrm{Pl} b-\mathrm{Ag} 1 b-\mathrm{Ol} a$	124.46 (8)
Pla-Agla-Ol b	115.27 (7)	$\mathrm{Pl} b-\mathrm{Ag} 1 b-\mathrm{Ol} b$	153.74 (8)
Pla-Agla-O2a	117.50 (9)	$\mathrm{P} 1 b-\mathrm{Ag} 1 b-\mathrm{O} 2 b$	126.06 (9)
$\mathrm{Ola}-\mathrm{Agla}-\mathrm{Ol} b$	77.2 (1)	$\mathrm{Ol} a-\mathrm{Aglb}-\mathrm{Ol} b$	77.8 (1)
Ola-Agla-02a	51.9 (1)	$\mathrm{O} 1 a-\mathrm{Ag1} b-\mathrm{O} 2 b$	98.9 (1)
$\mathrm{O} 1 b-\mathrm{Agla}-\mathrm{O} 2 a$	116.1 (1)	$\mathrm{O} 1 b-\mathrm{Ag1b-O} 2 b$	53.2 (1)
C3la-Pla-Agla	113.0 (1)	$\mathrm{C} 31 b-\mathrm{Pl} b-\mathrm{Agl} b$	114.8 (1)
C2la-Pla-Agla	114.47 (9)	$\mathrm{C} 21 b-\mathrm{Pl} b-\mathrm{Agl}$ b	114.8 (1)
Clla-Pla-Agla	112.78 (9)	Cl 1 b -P1b-Agl b	112.76 (9)
$\mathrm{Agla}-\mathrm{Ol} a-\mathrm{Agl}$ b	105.5 (1)	$\mathrm{Ag} 1 b-\mathrm{Ol} b-\mathrm{AgIa}$	99.2 (1)

Compound (IV)

Crystal data

$\left[\mathrm{Ag}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$.$0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=867.38$
Orthorhombic
$P 21_{1}$ 2
$a=12.1443$ (6) \AA
$b=19.2794(8) \AA$
$c=15.8815(9) \AA$
$V=3718.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.549 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scan
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.566, T_{\text {max }}=0.602$
7107 measured reflections
6538 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.080$
$S=1.048$
6538 reflections
375 parameters
H atoms: riding model,
$U(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$; water
H -atom located and refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0461 P)^{2}\right.$
$+0.2894 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 4. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (IV)

Agla-Pla	2.343 (1)	Aglb-P1b	2.346 (1)
Agla-Ola	2.204 (3)	$\mathrm{AgIb-Ola}$	2.675 (3)
Agla--O1b	2.568 (3)	$\mathrm{Ag} 16-\mathrm{O} 1 b$	2.197 (3)
Agla-O2a	2.706 (3)	$\mathrm{Ag} 1 b-\mathrm{O} 2 b$	2.773 (4)
Pla-Agla-Ola	164.64 (8)	$\mathrm{Pl} b-\mathrm{Aglb-Ola}$	112.29 (7)
Pla-Agla-Ol b	114.32 (7)	$\mathrm{Pl} b-\mathrm{Ag} 1 b-\mathrm{Ol} b$	167.73 (8)
PlA-Ag1a-O2a	116.76 (8)	$\mathrm{Pl} b-\mathrm{Ag} 1 b-\mathrm{O} 2 b$	118.17 (9)
$\mathrm{Ol} a-\mathrm{Agla}-\mathrm{Ol} b$	80.8 (1)	$\mathrm{Ol} b-\mathrm{Aglb}-\mathrm{Ol} a$	78.52 (9)
Ola-Agla-O2a	51.8(1)	$\mathrm{O} 16-\mathrm{Ag} 16-\mathrm{O} 2 b$	50.0 (1)
$\mathrm{Ol} b-\mathrm{Agla}-\mathrm{O} 2 a$	110.4 (1)	$\mathrm{Ola}-\mathrm{Aglb-O} 2 b$	114.6 (1)
Clla-Pla-Agla	113.5 (1)	$\mathrm{Cllb-Pl} b-\mathrm{Agl} b$	113.9 (1)
C2la-Pla-Agla	113.8 (1)	$\mathrm{C} 21 b-\mathrm{Pl} b-\mathrm{Ag} 1 b$	112.9 (1)
C3la-Pla-Agla	112.8 (1)	C31b-P1b-Ag $1 b$	114.3 (1)
$\mathrm{Agla}-\mathrm{Ol} a-\mathrm{Agl}$ b	98.6(1)	Agl --Olb-Agla	102.1 (1)

The phenyl rings in the four structures were refined as rigid hexagons. In (I), one of the rings is disordered over two positions. In (II), one of the water molecules is disordered over two positions; the two half-site-occupancy O atoms were refined with an EADP instruction in SHELXL93 (Sheldrick, 1993). In (III), the water is also disordered over two positions and an EADP instruction was also used. In (IV), the water molecule which lies on the twofold axis is disordered over two positions but the EADP constraint was not used; the water H atom was located from a difference Fourier map and refined.

For all compounds, data collection: CAD-4 VAXIPC (EnrafNonius, 1988); cell refinement: CAD-4 VAXIPC; data reduction: Xtal3.0 (Hall \& Stewart, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93; molecular graphics: ORTEPII (Johnson, 1976) in SHELXLTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXL93.

We thank the University of Malaya for supporting this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KH1148). Services for accessing these data are described at the back of the journal.

References

Blues, E. T., Drew, M. G. B. \& Femi-Onadeko, B. (1977). Acta Cryst. B33, 3965-3967.
Drew, M. G. B., Othman, A. H., Edwards, D. A. \& Richards, R. (1975). Acta Cryst. B31, 2695-2697.

Enraf-Nonius (1988). CAD-4 VAXIPC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Softuare and the Operating System. Enraf-Nonius, Delft, The Netherlands.
Femi-Onadeko, B. (1980). Z. Kristallogr. 152, 159-160.
Flack, H. D. \& Schwarzenbach, D. (1988). Acta Crist. A44. 499-506.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ng. S. W. \& Othman, A. H. (1995). Z. Kristallogr. 210, 674-675.
North, A. C. T., Phillips. D. C. \& Mathews, F. S. (1968). Acta Cr.st. A24, 351-359.
Sheldrick, G. M. (1990a). Acta Cnist. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cristal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Crist. A46, C-34.

